Generalized Gorenstein Arf rings

NAOKI TANIGUCHI

Meiji University

Based on the works jointly with

Ela Celikbas, Olgur Celikbas, and Shiro Goto

September 5, 2017

Introduction

Aim of this research

Find a new class of Cohen–Macaulay rings, which naturally covers the class of Gorenstein rings and fills in a gap between Cohen–Macaulay and Gorenstein properties.

Application

History of almost Gorenstein rings

- [Barucci-Fröberg, 1997]
 - \cdots one-dimensional analytically unramified local rings
- [Goto-Matsuoka-Phuong, 2013]
 - ··· one-dimensional Cohen-Macaulay local rings
- [Goto-Takahashi-T, 2015]
 - $\cdots \ higher-dimensional \ Cohen-Macaulay \ local/graded \ rings$

Recently, S. Goto and S. Kumashiro defined

Generalized Gorenstein local rings

Theorem 1.1 (Barucci-Fröberg, 1997)

Let $0 < a_1 < a_2 < \cdots < a_\ell \in \mathbb{Z}$ $(\ell > 0)$ s.t. $gcd(a_1, a_2, \dots, a_\ell) = 1$. Let V = k[[t]] be the formal power series ring over a field k. We set

$$R = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \text{ and } H = \langle a_1, a_2, \dots, a_\ell \rangle.$$

Then TFAE.

(1) *R* is an almost Gorenstein Arf ring.
 (2) 2 + a_i ∈ H for 1 ≤ ∀i ≤ ℓ.

Question 1.2

Is there any characterization of generalized Gorenstein Arf rings?

4 / 25

< 1 →

Theorem 1.1 (Barucci-Fröberg, 1997)

Let $0 < a_1 < a_2 < \cdots < a_\ell \in \mathbb{Z}$ $(\ell > 0)$ s.t. $gcd(a_1, a_2, \dots, a_\ell) = 1$. Let V = k[[t]] be the formal power series ring over a field k. We set

$$R = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \text{ and } H = \langle a_1, a_2, \dots, a_\ell \rangle.$$

Then TFAE.

(1) *R* is an almost Gorenstein Arf ring.
 (2) 2 + a_i ∈ *H* for 1 ≤ ∀*i* ≤ ℓ.

Question 1.2

Is there any characterization of generalized Gorenstein Arf rings?

・ロト ・同ト ・ヨト ・ヨト

Setting 1.3

- (R, \mathfrak{m}) a Cohen–Macaulay local ring with $d = \dim R$
- $|R/\mathfrak{m}| = \infty$
- \exists K_R the canonical module of R

Definition 1.4 (Goto-Kumashiro, 2017)

We say that R is <u>a generalized Gorenstein ring</u>, if either (1) R is a Gorenstein ring, or (2) R is not a Gorenstein ring, but $\exists \sqrt{\mathfrak{a}} = \mathfrak{m}$, \exists an exact sequence

$$0
ightarrow R \xrightarrow{\varphi} \mathsf{K}_R
ightarrow C
ightarrow 0$$

of R-modules s.t. C is an Ulrich R-module w.r.t. a, and

$$R/\mathfrak{a}\otimes_R \varphi: R/\mathfrak{a} \to \mathsf{K}_R/\mathfrak{a}\mathsf{K}_R$$

is injective.

5 / 25

イロト イヨト イヨト

Let *M* be a finite *R*-module with $s = \dim_R M \ge 0$, $\sqrt{\mathfrak{a}} = \mathfrak{m}$.

Definition 1.5 (Goto-Ozeki-Takahashi-Watanabe-Yoshida, 2014)

We say that M is an Ulrich R-module with respect to a if

- *M* is a CM *R*-module,
- $e^0_\mathfrak{a}(M) = \ell_R(M/\mathfrak{a}M)$, and
- $M/\mathfrak{a}M$ is a free R/\mathfrak{a} -module.

Note that if M is a CM R-module, then

 $e^0_{\mathfrak{a}}(M) = \ell_R(M/\mathfrak{a}M) \iff \mathfrak{a}M = (f_1, f_2, \dots, f_s)M \text{ for } \exists f_1, f_2, \dots, f_s \in \mathfrak{a}$

Suppose that \exists an exact sequence

 $0 \rightarrow R \rightarrow K_R \rightarrow C \rightarrow 0$

of *R*-modules s.t. $C \neq (0)$. Then *C* is a CM *R*-module with dim_{*R*} C = d - 1.

Note that C is an Ulrich R-module w.r.t \mathfrak{a} if and only if

- $C/\mathfrak{a}C$ is a free R/\mathfrak{a} -module and
- $\mathfrak{a}C = (f_2, f_3, \dots, f_d)C$ for $\exists f_2, f_3, \dots, f_d \in \mathfrak{a}$.

Therefore, if $\mathfrak{a} = \mathfrak{m}$,

an almost Gorenstein ring \implies a generalized Gorenstein ring

Example 1.6 (Goto-Kumashiro, 2017)

- R is a generalized Gorenstein ring, if $e(R) \leq 3$.
- Let $R = k[[X, Y, Z, W]]/I_2\begin{pmatrix} X^n & Y & Z \\ Y & Z & W \end{pmatrix}$ (n > 0). Then R is a generalized Gorenstein ring w.r.t. $\mathfrak{a}_i = (x^i, y, z, w)$ for $1 \le i \le n$.

Setting 1.7

- (R, \mathfrak{m}) a Cohen–Macaulay local ring with dim R = 1
- \exists K_R the canonical module of R
- I a canonical ideal of R, that is, $I \neq R$ and $I \cong K_R$
- Q = (a) a minimal reduction of I

•
$$K = \frac{I}{a} = \left\{ \frac{x}{a} \mid x \in I \right\} \subseteq Q(R)$$

- S = R[K]
- c = R : S

Then, K is a fractional ideal of R s.t.

$$R \subseteq K \subseteq \overline{R}$$

and S is a module-finite extension of R.

9 / 25

The main result of this talk is stated as follows.

Theorem 1.8 (Celikbas-Celikbas-Goto-T, 2017)

Suppose that R is a generalized Gorenstein ring. Then TFAE.

(1) R is an Arf ring.

(2) v(R) = e(R) and $e(S_M) \le 2$ for $\forall M \in Max S$.

Survey on Arf rings

Let A be a commutative Noetherian semi-local ring and assume that

(\sharp) A_M is a CM local ring with dim $A_M = 1$ for $\forall M \in Max A$.

Let $\mathcal{F}_A = \{I \subseteq A \mid \exists NZD \in I\}$. Then

$$A \subseteq I : I \subseteq I^2 : I^2 \subseteq \cdots \subseteq I^n : I^n \subseteq \cdots \subseteq \overline{A}$$

for $\forall I \in \mathcal{F}_A$. We set

$$A^{I} = \bigcup_{n>0} [I^{n} : I^{n}].$$

Note that if $x \in I$ is a reduction of I, then

$$A' = A\left[\frac{l}{x}\right] \subseteq \mathsf{Q}(A).$$

We say that $I \in \mathcal{F}_A$ is a stable ideal of A, if $A^I = I : I$. Then

$$I \in \mathcal{F}_A$$
 is stable $\iff I^2 = xI$ for $\exists x \in I$.

Definition 2.1 (Lipman, 1971)

The ring A is called *an Arf ring*, if every integrally closed ideal $I \in \mathcal{F}_A$ is stable.

Example 2.2

Let k be a field and V = k[[t]] the formal power series ring.

•
$$R = k[[t^4, t^7, t^9, t^{10}]]$$
 is an Arf ring.

•
$$R = k[[t^3, t^7, t^{11}]]$$
 is NOT an Arf ring.

12 / 25

			rippileation
Notation 2.3			
For $n \ge 0$, we set			
	$A_n = \begin{cases} A \\ A_{n-1}^{J(A_{n-1})} \end{cases}$	if n = 0, $if n > 0,$	

Proof of

where J(R) denotes the Jacobson radical of a ring R.

Survey on Arf rings

Theorem 2.4 (Lipman, 1971)

TFAE.

Introduction

(1) A is an Arf ring.

(2) For $\forall n \geq 0$, $\forall M \in Max A_n$, we have $v((A_n)_M) = e((A_n)_M)$.

13 / 25

Application

Proof of Theorem 1.8

We maintain the notation as in Setting 1.7 and Notation 2.3.

Setting 1.7

- (R, \mathfrak{m}) a Cohen–Macaulay local ring with dim R = 1
- $\exists K_R$ the canonical module of R
- I a canonical ideal of R, that is, $I \neq R$ and $I \cong K_R$
- Q = (a) a minimal reduction of I

•
$$K = \frac{I}{a} = \left\{ \frac{x}{a} \mid x \in I \right\} \subseteq Q(R)$$

• S = R[K]

•
$$\mathfrak{c} = R : S$$

Theorem 3.1 (Goto-Matsuoka-Phuong, 2013)

TFAE.

- (1) R is an almost Gorenstein ring and v(R) = e(R).
- (2) $B = \mathfrak{m} : \mathfrak{m}$ is a Gorenstein ring.

Theorem 3.2 (Goto-Kumashiro, 2017)

Suppose that $\exists x \in \mathfrak{m} \text{ s.t. } \mathfrak{m}^2 = x\mathfrak{m}$. Then TFAE.

R is a generalized Gorenstein ring, but not an almost Gorenstein ring.
 B = m : m is a non-Gorenstein generalized Gorenstein ring and n² = xn.
 When this is the case, R/m ≅ B/n and

$$\ell_B(B/(B:B[L])) = \ell_R(R/\mathfrak{c}) - 1$$

where n = J(B) and L = KB.

Theorem 3.3

Suppose that $e(R) \ge 3$. Then TFAE. (1) R is a generalized Gorenstein ring and v(R) = e(R). (2) S is a Gorenstein ring and $\exists N > 0$ s.t. (i) $R_N = S$, and (ii) R_n is a local ring, $v(R_n) = e(R_n) = e(R)$ for $0 \le \forall n < N$. When this is the case, we have $N = \ell_R(R/\mathfrak{c})$.

- *R* is a Gorenstein ring $\iff \ell_R(R/\mathfrak{c}) = 0$
- R is a non-Gorenstein almost Gorenstein ring $\iff \ell_R(R/\mathfrak{c}) = 1$

• = • • = •

We set $\ell = \ell_R(R/\mathfrak{c})$, e = e(R), and $B = \mathfrak{m} : \mathfrak{m}$.

Proof of Theorem 3.3 $(1) \Rightarrow (2)$.

Choose $\exists x \in \mathfrak{m} \text{ s.t. } \mathfrak{m}^2 = x\mathfrak{m}$. Then $\ell > 0$, since R is not Gorenstein. If $\ell = 1$, then R is an almost Gorenstein ring and $S = B = R_1$ is a Gorenstein ring. Suppose $\ell > 1$ and the assertion holds for $\ell - 1$. Since R is not an almost Gorenstein ring, B is a non-Gorenstein generalized Gorenstein ring and

 $\mathfrak{n}^2 = x\mathfrak{n}$ and $R/\mathfrak{m} \cong B/\mathfrak{n}$

where n = J(B). Hence $e_n^0(B) = e$. Note that $B \subseteq L := KB \subseteq \overline{B}$, $L \cong K_B$, and S = B[L]. Therefore $\ell_B(B/(B : B[L])) = \ell_R(R/\mathfrak{c}) - 1 = \ell - 1$. Hence S = B[L] is a Gorenstein ring, $R_n = B_{n-1}$ is local, and $v(R_n) = e(R_n) = e$ for $1 < \forall n < \ell$.

くロ とくぼ とくほ とくほ とうしょう

17 / 25

Proof of Theorem 3.3 $(2) \Rightarrow (1)$.

If N = 1, then $S = \mathfrak{m} : \mathfrak{m}$, so that R is an almost Gorenstein ring and $\ell = N$. Suppose N > 1 and the assertion holds for N - 1. Since $v(R) = e, \exists x \in \mathfrak{m}$ s.t. $\mathfrak{m}^2 = x\mathfrak{m}$. Then $R_1 = B$ is local, v(B) = e(B) = e, and

 $e = e_{\mathfrak{m}}^{0}(R) = e_{\mathfrak{m}}^{0}(B) = \ell_{R}(B/xB) \ge \ell_{B}(B/xB) \ge e_{\mathfrak{m}}^{0}(B) = e$

where $\mathfrak{n} = J(B)$. Hence $R/\mathfrak{m} \cong B/\mathfrak{n}$. Therefore $\mathfrak{n}^2 = x\mathfrak{n}$.

Since B is a non-Gorenstein generalized Gorenstein ring, R is a generalized Gorenstein ring, but not an almost Gorenstein ring, and

 $\ell_B(B/(B:B[KB])) = \ell - 1.$

Since $v(R_n) = e(R_n) = e$ for $1 \le \forall n < N$, so is B_{n-1} . By induction hypothesis, $N - 1 = \ell - 1$, as desired.

18 / 25

Let us note the following.

Lemma 3.4

Let $R \subseteq C \subseteq Q(R)$ be an intermediate ring s.t. C is a finite R-module. Suppose that $e(C_M) \leq 2$ for $\forall M \in Max C$. Then C is an Arf ring.

We are now ready to prove Theorem 1.8.

Theorem 1.8

Suppose that R is a generalized Gorenstein ring. Then TFAE.

(1) R is an Arf ring.

(2) v(R) = e(R) and $e(S_M) \le 2$ for $\forall M \in Max S$.

Proof of Theorem 1.8.

May assume that v(R) = e(R) and $e(R) \ge 3$. By Theorem 3.3, S is Gorenstein, $\exists N > 0 \text{ s.t. } R_N = S, R_n \text{ is local, and } v(R_n) = e(R_n) = e(R) \text{ for } 0 \le \forall n < N.$

Suppose that R is Arf. Since $S = R_N$, S is an Arf ring. Thus $e(S_M) \le 2$ for $\forall M \in Max S$.

Conversely, we assume $e(S_M) \le 2$ for $\forall M \in Max S$. By Lemma 3.4, S is Arf. Since R_n is local, $v(R_n) = e(R_n) = e(R)$ for $0 \le \forall n < N$, R is Arf.

・ロト ・同ト ・ヨト ・ヨト

э.

١	We set $B = \mathfrak{m} : \mathfrak{m}$.		
•	Corollary 3.5	h	
	TFAE.	L	
((1) R is an almost Gorenstein Arf ring.		

Proof of Theorem 1.8

(2) $e(B_M) \leq 2$ for $\forall M \in Max B$.

Survey on Arf rings

Example 3.6

Introduction

Let k be a field and V = k[[t]].

• $R = k[[t^4, t^7, t^9, t^{10}]]$ is an Arf ring, but not generalized Gorenstein.

• $R = k[[t^3, t^7, t^{11}]]$ is an almost Gorenstein ring but not Arf.

Application

We now recover the result of V. Barucci and R. Fröberg.

Theorem 1.1 (Barucci-Fröberg, 1997) Let $R = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq k[[t]]$ and $H = \langle a_1, a_2, \dots, a_\ell \rangle$. Then TFAE. (1) *R* is an almost Gorenstein Arf ring. (2) $2 + a_i \in H$ for $1 < \forall i < \ell$.

Corollary 3.7

Suppose that $R = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]]$ is a generalized Gorenstein ring. Then R is an Arf ring if and only if

- v(R) = e(R).
- $2 + \ell_R(R/\mathfrak{c}) \cdot a_1 \in H$, and
- $2 + a_i \in H$ for $2 < \forall i < \ell$.

3

Example 3.8

Let k be a field and V = k[[t]].

(1) $R = k[[t^{e+i} | 0 \le i \le e-1]]$ $(e \ge 2)$ is an almost Gorenstein Arf ring.

- (2) $R = k[[t^e, \{t^{e+i} \mid 2 \le i \le e-1\}, t^{2e+1}]] (e \ge 3)$ is an almost Gorenstein Arf ring.
- (3) $R = k[[t^5, t^{16}, t^{17}, t^{18}, t^{19}]]$ is a generalized Gorenstein Arf ring, which is not an almost Gorenstein ring.

23 / 25

Application

Let $A = R \ltimes \mathfrak{c}$ be the idealization of $\mathfrak{c} = R : S$.

Theorem 4.1

Suppose that R is a generalized Gorenstein ring. Then TFAE.

(1) A is an Arf ring.

(2) v(R) = e(R) and $S = \overline{R}$.

When this is the case, R is an Arf ring.

As a consequence, we have the following.

Corollary 4.2

 $R \ltimes \mathfrak{m}$ is an almost Gorenstein Arf ring if and only if $\mathfrak{m}\overline{R} \subseteq R$.

NAOKI TANIGUCHI (Meiji University)

Generalized Gorenstein Arf rings

September 5, 2017

イロト イポト イヨト イヨト

24 / 25

э

Thank you so much for your attention.

NAOKI TANIGUCHI (Meiji University) Generalized Gorenstein Arf rings

э