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Introduction

Aim of this research

Find a new class of Cohen–Macaulay rings, which naturally covers the class of
Gorenstein rings and fills in a gap between Cohen–Macaulay and Gorenstein
properties.
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History of almost Gorenstein rings

[Barucci-Fröberg, 1997]

· · · one-dimensional analytically unramified local rings

[Goto-Matsuoka-Phuong, 2013]

· · · one-dimensional Cohen–Macaulay local rings

[Goto-Takahashi-T, 2015]

· · · higher-dimensional Cohen–Macaulay local/graded rings

Recently, S. Goto and S. Kumashiro defined

Generalized Gorenstein local rings
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Theorem 1.1 (Barucci-Fröberg, 1997)

Let 0 < a1 < a2 < · · · < aℓ ∈ Z (ℓ > 0) s.t. gcd(a1, a2, . . . , aℓ) = 1. Let
V = k[[t]] be the formal power series ring over a field k. We set

R = k[[ta1 , ta2 , . . . , taℓ ]] and H = ⟨a1, a2, . . . , aℓ⟩ .

Then TFAE.

(1) R is an almost Gorenstein Arf ring.

(2) 2 + ai ∈ H for 1 ≤ ∀i ≤ ℓ.

Question 1.2

Is there any characterization of generalized Gorenstein Arf rings?
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Setting 1.3

(R,m) a Cohen–Macaulay local ring with d = dimR

|R/m| = ∞

∃ KR the canonical module of R

Definition 1.4 (Goto-Kumashiro, 2017)

We say that R is a generalized Gorenstein ring, if either (1) R is a Gorenstein

ring, or (2) R is not a Gorenstein ring, but ∃
√
a = m, ∃ an exact sequence

0 → R
φ−→ KR → C → 0

of R-modules s.t. C is an Ulrich R-module w.r.t. a, and

R/a⊗R φ : R/a → KR /aKR

is injective.

Naoki Taniguchi (Meiji University) Generalized Gorenstein Arf rings September 5, 2017 5 / 25



Introduction Survey on Arf rings Proof of Theorem 1.8 Application

Let M be a finite R-module with s = dimR M ≥ 0,
√
a = m.

Definition 1.5 (Goto-Ozeki-Takahashi-Watanabe-Yoshida, 2014)

We say that M is an Ulrich R-module with respect to a if

M is a CM R-module,

e0a(M) = ℓR(M/aM), and

M/aM is a free R/a-module.

Note that if M is a CM R-module, then

e0a(M) = ℓR(M/aM) ⇐⇒ aM = (f1, f2, . . . , fs)M for ∃ f1, f2, . . . , fs ∈ a
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Suppose that ∃ an exact sequence

0 → R → KR → C → 0

of R-modules s.t. C ̸= (0). Then C is a CM R-module with dimR C = d − 1.

Note that C is an Ulrich R-module w.r.t a if and only if

C/aC is a free R/a-module and

aC = (f2, f3, . . . , fd)C for ∃ f2, f3, . . . , fd ∈ a.

Therefore, if a = m,

an almost Gorenstein ring =⇒ a generalized Gorenstein ring
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Example 1.6 (Goto-Kumashiro, 2017)

R is a generalized Gorenstein ring, if e(R) ≤ 3.

Let R = k[[X ,Y ,Z ,W ]]/I2
(
X n Y Z
Y Z W

)
(n > 0). Then R is a generalized

Gorenstein ring w.r.t. ai = (x i , y , z ,w) for 1 ≤ i ≤ n.
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Setting 1.7

(R,m) a Cohen–Macaulay local ring with dimR = 1

∃ KR the canonical module of R

I a canonical ideal of R, that is, I ̸= R and I ∼= KR

Q = (a) a minimal reduction of I

K = I
a =

{
x
a

∣∣ x ∈ I
}
⊆ Q(R)

S = R[K ]

c = R : S

Then, K is a fractional ideal of R s.t.

R ⊆ K ⊆ R

and S is a module-finite extension of R.
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The main result of this talk is stated as follows.

Theorem 1.8 (Celikbas-Celikbas-Goto-T, 2017)

Suppose that R is a generalized Gorenstein ring. Then TFAE.

(1) R is an Arf ring.

(2) v(R) = e(R) and e(SM) ≤ 2 for ∀M ∈ Max S.
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Survey on Arf rings

Let A be a commutative Noetherian semi-local ring and assume that

(♯) AM is a CM local ring with dimAM = 1 for ∀M ∈ MaxA.

Let FA = {I ⊆ A | ∃ NZD ∈ I}. Then

A ⊆ I : I ⊆ I 2 : I 2 ⊆ · · · ⊆ I n : I n ⊆ · · · ⊆ A

for ∀I ∈ FA. We set

AI =
∪
n>0

[I n : I n].

Note that if x ∈ I is a reduction of I , then

AI = A

[
I

x

]
⊆ Q(A).
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We say that I ∈ FA is a stable ideal of A, if AI = I : I . Then

I ∈ FA is stable ⇐⇒ I 2 = xI for ∃x ∈ I .

Definition 2.1 (Lipman, 1971)

The ring A is called an Arf ring, if every integrally closed ideal I ∈ FA is stable.

Example 2.2

Let k be a field and V = k[[t]] the formal power series ring.

R = k[[t4, t7, t9, t10]] is an Arf ring.

R = k[[t3, t7, t11]] is NOT an Arf ring.
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Notation 2.3

For n ≥ 0, we set

An =

{
A if n = 0,

A
J(An−1)
n−1 if n > 0,

where J(R) denotes the Jacobson radical of a ring R.

Theorem 2.4 (Lipman, 1971)

TFAE.

(1) A is an Arf ring.

(2) For ∀n ≥ 0, ∀M ∈ MaxAn, we have v((An)M) = e((An)M).
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Proof of Theorem 1.8

We maintain the notation as in Setting 1.7 and Notation 2.3.

Setting 1.7

(R,m) a Cohen–Macaulay local ring with dimR = 1

∃ KR the canonical module of R

I a canonical ideal of R, that is, I ̸= R and I ∼= KR

Q = (a) a minimal reduction of I

K = I
a =

{
x
a

∣∣ x ∈ I
}
⊆ Q(R)

S = R[K ]

c = R : S
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Theorem 3.1 (Goto-Matsuoka-Phuong, 2013)

TFAE.

(1) R is an almost Gorenstein ring and v(R) = e(R).

(2) B = m : m is a Gorenstein ring.

Theorem 3.2 (Goto-Kumashiro, 2017)

Suppose that ∃ x ∈ m s.t. m2 = xm. Then TFAE.

(1) R is a generalized Gorenstein ring, but not an almost Gorenstein ring.

(2) B = m : m is a non-Gorenstein generalized Gorenstein ring and n2 = xn.

When this is the case, R/m ∼= B/n and

ℓB(B/(B : B[L])) = ℓR(R/c)− 1

where n = J(B) and L = KB.
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Theorem 3.3

Suppose that e(R) ≥ 3. Then TFAE.

(1) R is a generalized Gorenstein ring and v(R) = e(R).

(2) S is a Gorenstein ring and ∃N > 0 s.t.

(i) RN = S, and
(ii) Rn is a local ring, v(Rn) = e(Rn) = e(R) for 0 ≤ ∀n < N.

When this is the case, we have N = ℓR(R/c).

R is a Gorenstein ring ⇐⇒ ℓR(R/c) = 0

R is a non-Gorenstein almost Gorenstein ring ⇐⇒ ℓR(R/c) = 1
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We set ℓ = ℓR(R/c), e = e(R), and B = m : m.

Proof of Theorem 3.3 (1) ⇒ (2).

Choose ∃ x ∈ m s.t. m2 = xm. Then ℓ > 0, since R is not Gorenstein. If ℓ = 1,
then R is an almost Gorenstein ring and S = B = R1 is a Gorenstein ring.

Suppose ℓ > 1 and the assertion holds for ℓ− 1. Since R is not an almost
Gorenstein ring, B is a non-Gorenstein generalized Gorenstein ring and

n2 = xn and R/m ∼= B/n

where n = J(B). Hence e0n(B) = e.

Note that B ⊆ L := KB ⊆ B, L ∼= KB , and S = B[L]. Therefore

ℓB(B/(B : B[L])) = ℓR(R/c)− 1 = ℓ− 1.

Hence S = B[L] is a Gorenstein ring, Rn = Bn−1 is local, and v(Rn) = e(Rn) = e
for 1 ≤ ∀n < ℓ.
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Proof of Theorem 3.3 (2) ⇒ (1).

If N = 1, then S = m : m, so that R is an almost Gorenstein ring and ℓ = N.

Suppose N > 1 and the assertion holds for N − 1. Since v(R) = e, ∃ x ∈ m s.t.
m2 = xm. Then R1 = B is local, v(B) = e(B) = e, and

e = e0m(R) = e0m(B) = ℓR(B/xB) ≥ ℓB(B/xB) ≥ e0n(B) = e

where n = J(B). Hence R/m ∼= B/n. Therefore n2 = xn.

Since B is a non-Gorenstein generalized Gorenstein ring, R is a generalized
Gorenstein ring, but not an almost Gorenstein ring, and

ℓB(B/(B : B[KB])) = ℓ− 1.

Since v(Rn) = e(Rn) = e for 1 ≤ ∀n < N, so is Bn−1. By induction hypothesis,
N − 1 = ℓ− 1, as desired.
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Let us note the following.

Lemma 3.4

Let R ⊆ C ⊆ Q(R) be an intermediate ring s.t. C is a finite R-module. Suppose
that e(CM) ≤ 2 for ∀M ∈ MaxC. Then C is an Arf ring.
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We are now ready to prove Theorem 1.8.

Theorem 1.8

Suppose that R is a generalized Gorenstein ring. Then TFAE.

(1) R is an Arf ring.

(2) v(R) = e(R) and e(SM) ≤ 2 for ∀M ∈ Max S.

Proof of Theorem 1.8.

May assume that v(R) = e(R) and e(R) ≥ 3. By Theorem 3.3, S is Gorenstein,
∃N > 0 s.t. RN = S , Rn is local, and v(Rn) = e(Rn) = e(R) for 0 ≤ ∀n < N.

Suppose that R is Arf. Since S = RN , S is an Arf ring. Thus e(SM) ≤ 2 for
∀M ∈ MaxS .

Conversely, we assume e(SM) ≤ 2 for ∀M ∈ MaxS . By Lemma 3.4, S is Arf.
Since Rn is local, v(Rn) = e(Rn) = e(R) for 0 ≤ ∀n < N, R is Arf.
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We set B = m : m.

Corollary 3.5

TFAE.

(1) R is an almost Gorenstein Arf ring.

(2) e(BM) ≤ 2 for ∀M ∈ MaxB.

Example 3.6

Let k be a field and V = k[[t]].

R = k[[t4, t7, t9, t10]] is an Arf ring, but not generalized Gorenstein.

R = k[[t3, t7, t11]] is an almost Gorenstein ring but not Arf.
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We now recover the result of V. Barucci and R. Fröberg.

Theorem 1.1 (Barucci-Fröberg, 1997)

Let R = k[[ta1 , ta2 , . . . , taℓ ]] ⊆ k[[t]] and H = ⟨a1, a2, . . . , aℓ⟩. Then TFAE.

(1) R is an almost Gorenstein Arf ring.

(2) 2 + ai ∈ H for 1 ≤ ∀i ≤ ℓ.

Corollary 3.7

Suppose that R = k[[ta1 , ta2 , . . . , taℓ ]] is a generalized Gorenstein ring. Then R is
an Arf ring if and only if

v(R) = e(R),

2 + ℓR(R/c) · a1 ∈ H, and

2 + ai ∈ H for 2 ≤ ∀i ≤ ℓ.
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Example 3.8

Let k be a field and V = k[[t]].

(1) R = k[[te+i | 0 ≤ i ≤ e − 1]] (e ≥ 2) is an almost Gorenstein Arf ring.

(2) R = k[[te , {te+i | 2 ≤ i ≤ e − 1}, t2e+1]] (e ≥ 3) is an almost Gorenstein
Arf ring.

(3) R = k[[t5, t16, t17, t18, t19]] is a generalized Gorenstein Arf ring, which is
not an almost Gorenstein ring.
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Application

Let A = R ⋉ c be the idealization of c = R : S .

Theorem 4.1

Suppose that R is a generalized Gorenstein ring. Then TFAE.

(1) A is an Arf ring.

(2) v(R) = e(R) and S = R.

When this is the case, R is an Arf ring.

As a consequence, we have the following.

Corollary 4.2

R ⋉m is an almost Gorenstein Arf ring if and only if mR ⊆ R.
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Thank you so much for your attention.
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