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Introduction

Aim of this research

Find a new class of Cohen—Macaulay rings, which naturally covers the class of
Gorenstein rings and fills in a gap between Cohen—Macaulay and Gorenstein
properties.
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Introduction

History of almost Gorenstein rings

@ [Barucci-Froberg, 1997]

- one-dimensional analytically unramified local rings

@ [Goto-Matsuoka-Phuong, 2013]

- one-dimensional Cohen—Macaulay local rings

@ [Goto-Takahashi-T, 2015]

-+« higher-dimensional Cohen—Macaulay local/graded rings

Recently, S. Goto and S. Kumashiro defined

Generalized Gorenstein local rings
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Introduction

Theorem 1.1 (Barucci-Froberg, 1997)

Let0<ay<ay<---<a€Z(¢>0)s.t ged(ar,an,...,ar) =1. Let
V = k[[t]] be the formal power series ring over a field k. We set

R = k[[t™, t,...,t*]] and H = (a1,a,...,as).

Then TFAE.

(1) R is an almost Gorenstein Arf ring.

(2) 2+a,eHforl1 <Vi<U/.
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Introduction

Theorem 1.1 (Barucci-Froberg, 1997)

Let0<ay<ay<---<a€Z(¢>0)s.t ged(ar,an,...,ar) =1. Let
V = k[[t]] be the formal power series ring over a field k. We set

R = k[[t™, t%2,...,t*]] and H = (a1, as,.
Then TFAE.

..,ag>.

(1) R is an almost Gorenstein Arf ring.

(2) 2+a,eHforl1 <Vi<U/.

Question 1.2

Is there any characterization of generalized Gorenstein Arf rings?
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Introduction

Setting 1.3
@ (R, m) a Cohen—Macaulay local ring with d = dim R
@ |R/m| =00

@ 1 Kpg the canonical module of R

Definition 1.4 (Goto-Kumashiro, 2017)

We say that R is a generalized Gorenstein ring, if either (1) R is a Gorenstein
ring, or (2) R is not a Gorenstein ring, but 3 /a = m, 3 an exact sequence

0->RES K —C—0
of R-modules s.t. C is an Ulrich R-module w.r.t. a, and

R/Cl@R(,DZR/Cl—} KR/CLKR

is injective.

=
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Introduction

Let M be a finite R-module with s =dimg M >0, v/a =m.

Definition 1.5 (Goto-Ozeki- Takahashi-Watanabe-Yoshida, 2014)

We say that M is an Ulrich R-module with respect to a if
@ M isa CM R-module,
@ &%(M) = tr(M/aM), and
@ M/aM is a free R/a-module.

Note that if M is a CM R-module, then

(M) =lr(M/aM) <= aM = (fi,f,...,f)MforI f,f,....,fi€a

a

Naok1 TaNiGucHl (Meiji University) Generalized Gorenstein Arf rings September 5, 2017 6 /25



Introduction

Suppose that 3 an exact sequence
0—-R—-Kr—C—=0
of R-modules s.t. C # (0). Then Cis a CM R-module with dimg C =d — 1.
Note that C is an Ulrich R-module w.r.t a if and only if
@ C/aC is a free R/a-module and
@ aC = (h,fy...,fx)Cfor I h,f,...,fy €a.
Therefore, if a = m,

an almost Gorenstein ring = a generalized Gorenstein ring
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Example 1.6 (Goto-Kumashiro, 2017)

@ R is a generalized Gorenstein ring, if e(R) < 3.

@ Let R=K[[X,Y,Z W]/ (X' ¥ %) (n>0). Then R is a generalized
Gorenstein ring w.r.t. a; = (x',y,z,w) for 1 <i < n.
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Introduction

Setting 1.7

@ (R,m) a Cohen—Macaulay local ring with dimR =1
@ d Kg the canonical module of R

@ / a canonical ideal of R, thatis, / ## R and | = Kg
@ Q = (a) a minimal reduction of /

o K=;={5[xerpca)

@ S =R[K]

@ c=R:S

Then, K is a fractional ideal of R s.t.
RCKCR

and S is a module-finite extension of R.
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The main result of this talk is stated as follows.

Theorem 1.8 (Celikbas-Celikbas-Goto-T, 2017)

Suppose that R is a generalized Gorenstein ring. Then TFAE.
(1) R is an Arf ring.
(2) v(R) =e(R) and e(Sm) < 2 for VM € MaxS$§.
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Survey on Arf rings

Survey on Arf rings

Let A be a commutative Noetherian semi-local ring and assume that

(t) Am is a CM local ring with dim Ay = 1 for VM € Max A.

Let Fo={/ CA|3INZD € /}. Then

ACI:ICPP:1?PC...C":I"C-..

N
|

for VI € Fa. We set
A= .

n>0
Note that if x € | is a reduction of /, then

AU:Aﬂ}gQM)
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Survey on Arf rings

We say that | € F, is a stable ideal of A, if A' =1 : 1. Then

| € Fa isstable < [>=x/ for Ix € I.

Definition 2.1 (Lipman, 1971)
The ring A is called an Arf ring, if every integrally closed ideal | € Fj4 is stable. ’

Example 2.2

Let k be a field and V = k[[t]] the formal power series ring.
@ R = k[[t* t", ¢ t1%] is an Arf ring.
@ R = k[[t3,t", t'1]] is NOT an Arf ring.
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Survey on Arf rings

Notation 2.3

For n > 0, we set

A - A ifn=0,
" AN s o,

where J(R) denotes the Jacobson radical of a ring R.

Theorem 2.4 (Lipman, 1971)

TFAE.

(1) Ais an Arf ring.

(2) For¥n>0, VM € MaxA,, we have v((A,)m) = e((An)m).
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Proof of Theorem 1.8

We maintain the notation as in Setting 1.7 and Notation 2.3.

Setting 1.7

@ (R,m) a Cohen—Macaulay local ring with dim R =1
@ 1 Kg the canonical module of R

@ | a canonical ideal of R, that is, | # R and | = Kg
@ Q = (a) a minimal reduction of |

o K=;={5[xepca)

@ S = R[K]

@ c=R:S
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Proof of Theorem 1.8

Theorem 3.1 (Goto-Matsuoka-Phuong, 2013)
TFAE.

(1) R is an almost Gorenstein ring and v(R) = e(R).

(2) B=m:m is a Gorenstein ring.

Theorem 3.2 (Goto-Kumashiro, 2017)

Suppose that 3 x € m s.t. m? = xm. Then TFAE.
(1) R is a generalized Gorenstein ring, but not an almost Gorenstein ring.
(2) B =m:m is a non-Gorenstein generalized Gorenstein ring and n?> = xn.

When this is the case, R/m = B/n and

ts(B/(B : B[L])) = tr(R/c) — 1

where n = J(B) and L = KB.
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Proof of Theorem 1.8

Theorem 3.3

Suppose that e(R) > 3. Then TFAE.
(1) R is a generalized Gorenstein ring and v(R) = e(R).
(2) S is a Gorenstein ring and IN > 0 s.t.

(1) RN = 5, and
(ii) R, is a local ring, v(R,) = e(R,) =e(R) for 0 < Vn < N.

When this is the case, we have N = (g(R/¢).

@ R is a Gorenstein ring <= {g(R/c)=0

@ R is a non-Gorenstein almost Gorenstein ring <= (r(R/¢) =1
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Proof of Theorem 1.8

We set £ = Lr(R/c), e=¢e(R), and B=m :m.

Proof of Theorem 3.3 (1) = (2).

Choose 3 x € m s.t. m2 = xm. Then ¢ > 0, since R is not Gorenstein. If £ =1,
then R is an almost Gorenstein ring and S = B = Ry is a Gorenstein ring.
Suppose £ > 1 and the assertion holds for £ — 1. Since R is not an almost
Gorenstein ring, B is a non-Gorenstein generalized Gorenstein ring and

n’ =xn and R/m = B/n
where n = J(B). Hence €2(B) = e.

Note that B C L := KB C B, L =2 Kg, and S = B[L]. Therefore
¢g(B/(B: B[L])) =4r(R/¢)—1=4¢—1.

Hence S = BJ[L] is a Gorenstein ring, R, = B,_1 is local, and v(R,) =e(R,) = e
for 1 <Vn< /.
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Proof of Theorem 1.8

Proof of Theorem 3.3 (2) = (1).
If N=1, then S = m: m, so that R is an almost Gorenstein ring and £ = N.

Suppose N > 1 and the assertion holds for N — 1. Since v(R) = e, 3 x € m s.t.
m2 = xm. Then R; = B is local, v(B) = e(B) = e, and

e=¢e"(R)=¢%(B) =(r(B/xB) > tg(B/xB) > (B) = e

where n = J(B). Hence R/m = B/n. Therefore n? = xn.

Since B is a non-Gorenstein generalized Gorenstein ring, R is a generalized
Gorenstein ring, but not an almost Gorenstein ring, and

5(B/(B : BIKB])) = (1.

Since v(R,) = e(R,) = e for 1 <Vn < N, sois B,_;. By induction hypothesis,
N—1=/¢—1, as desired.

O
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Proof of Theorem 1.8

Let us note the following.

Lemma 3.4

Let R C C C Q(R) be an intermediate ring s.t. C is a finite R-module. Suppose
that e(Cy) < 2 for VM € Max C. Then C is an Arf ring.
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Proof of Theorem 1.8

We are now ready to prove Theorem 1.8.

Theorem 1.8

Suppose that R is a generalized Gorenstein ring. Then TFAE.
(1) R is an Arf ring.
(2) v(R) =e(R) and e(Sm) < 2 for YM € Max§S.

Proof of Theorem 1.8.

May assume that v(R) = e(R) and e(R) > 3. By Theorem 3.3, S is Gorenstein,
N >0s.t. Ry=S, R, is local, and v(R,) = e(R,) = e(R) for 0 < V¥n < N.

Suppose that R is Arf. Since S = Ry, S is an Arf ring. Thus e(Sy) < 2 for
VM € Max S.

Conversely, we assume e(Sy) < 2 for VM € Max S. By Lemma 3.4, S is Arf.
Since R, is local, v(R,) = e(Rn) =¢e(R) for 0 <Vn < N, R is Arf.
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Proof of Theorem 1.8

We set B=m:m.

Corollary 3.5
TFAE.

(1) R is an almost Gorenstein Arf ring.

(2) e(Bm) <2 for VM € Max B.

Example 3.6
Let k be a field and V = k[[¢]].

@ R = k[[t* t",t° t1°]] is an Arf ring, but not generalized Gorenstein.

@ R = Kk[[t3, t", t']] is an almost Gorenstein ring but not Arf.
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Proof of Theorem 1.8

We now recover the result of V. Barucci and R. Froberg.

Theorem 1.1 (Barucci-Froberg, 1997)

Let R = k[[t*, t*2, ..., t*]] C k[[t]] and H = (a1, a2,...,as). Then TFAE.
(1) R is an almost Gorenstein Arf ring.

(2) 2+a; e Hforl<Vi<U{.

Corollary 3.7

Suppose that R = k[[t®,t%, ..., t*]] is a generalized Gorenstein ring. Then R is
an Arf ring if and only if

@ v(R) =¢(R),
@ 2+ (g(R/c)-a1 € H, and
@ 2+a, € Hfor2<Vi<V/.
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Proof of Theorem 1.8

Example 3.8
Let k be a field and V = k[[¢]].
(1) R=k[[t**"|0<i<e—1]] (e >2)is an almost Gorenstein Arf ring.

(2) R = k[[te,{te*' |2 <i < e—1},t%*1]] (e > 3) is an almost Gorenstein
Arf ring.

(3) R = k[[t5, 16, t17 8 t19]] is a generalized Gorenstein Arf ring, which is
not an almost Gorenstein ring.
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Application

Application

Let A= R x ¢ be the idealization of c= R : S.

Theorem 4.1

Suppose that R is a generalized Gorenstein ring. Then TFAE.
(1) Ais an Arf ring.
(2) v(R)=e(R) and S = R.

When this is the case, R is an Arf ring.

As a consequence, we have the following.

Corollary 4.2

R x m is an almost Gorenstein Arf ring if and only if mR C R.
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Application

Thank you so much for your attention.
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